ÍNDICE

PREFÁCIO NOTA PRÉVIA DO AUTOR			XI
			XII
1	LIGAÇÃO QUÍMICA E ESTRUTURA EM MOLÉCULAS ORGÂNICAS		1
	1.1	Estrutura das moléculas: átomos e conectividade	3
	1.2	Estruturas de Lewis	7
	1.3	Estrutura molecular tridimensional e hibridação	15
	1.4	As estruturas carbonadas e a sua representação	21
	1.5	Grupos funcionais e estruturas comuns	23
	1.6	Conclusão e objetivos	28
2	DESLOCALIZAÇÃO E CONJUGAÇÃO ELETRÓNICA		31
	2.1	Sistemas conjugados e deslocalização eletrónica	33
	2.2	Híbridos de ressonância	34
	2.3	Efeito indutivo	47
	2.4	Aromaticidade	50
	2.5	Conclusão e objetivos	53
3	EST	EREOQUÍMICA	55
	3.1	Estrutura tridimensional: projeções e convenções	57
	3.2	Conformações e confórmeros	62
	3.3	Isomeria e classificação	68
	3.4	Enantiómeros e quiralidade	70
	3.5	Diastereómeros e quiralidade	80
	3.6	Compostos com dois centros estereogénicos	82
	3.7	Conclusão e objetivos	84

4	UMA REAÇÃO EM QUÍMICA ORGÂNICA:			
	NO	ÇÕES FUNDAMENTAIS	87	
	4.1	Os esquemas reacionais	89	
	4.2	Porque acontece uma reação?	92	
	4.3	Como ocorre uma reação?	96	
	4.4	Movimento eletrónico em mecanismos polares	97	
	4.5	Conclusão e objetivos	105	
5	REAÇÕES ÁCIDO-BASE		107	
	5.1	A importância das reações ácido-base	109	
	5.2	Ácidos e bases de Brønsted-Lowry	110	
	5.3	Quantificação de força de um ácido	111	
	5.4	Previsão da posição do equilíbrio ácido-base	114	
	5.5	Previsão da acidez por análise estrutural da base conjugada	117	
	5.6	Identificação do protão mais ácido	126	
	5.7	Basicidade	129	
	5.8	Conclusão e objetivos	135	
6	SUBSTITUIÇÃO NUCLEÓFILA EM ÁTOMOS			
	DE (CARBONO SATURADOS	137	
	6.1	A substituição nucleófila em átomos de carbono saturados	139	
	6.2	O nucleófilo, o eletrófilo e o grupo de saída	140	
	6.3	Substituição nucleófila unimolecular $(S_N 1)$	148	
	6.4	Substituição nucleófila bimolecular (S _N 2)	160	
	6.5	$S_{N}1$ vs. $S_{N}2$	170	
	6.6	Conclusão e objetivos	174	
7	ELIMINAÇÃO		177	
	7.1	As reações de eliminação	179	
	7.2	O grupo de saída e os protões β	180	
	7.3	Eliminação unimolecular (E1)	182	
	7.4	Eliminação bimolecular (E2)	189	
	7.5	Eliminação ElcB	196	
	7.6	Resumo das características dos processos de eliminação	198	

	7.7	Identificação do mecanismo operante numa eliminação	199	
	7.8	Eliminação vs. substituição nucleófila	200	
	7.9	Conclusão e objetivos	203	
8	REAÇÕES NÃO RADICALARES EM INSATURAÇÕES			
	CAR	BONO-CARBONO	205	
	8.1	As reações de adição eletrófila a insaturações	207	
	8.2	Hidro-halogenação de insaturações CC	209	
	8.3	Bromação de ligações duplas CC	213	
	8.4	Epoxidação de alcenos por adição eletrófila	216	
	8.5	Redução de insaturações CC por hidrogenação catalítica	219	
	8.6	Redução de ligações triplas carbono-carbono com metais	221	
	8.7	Reações pericíclicas e reação de Diels-Alder	222	
	8.8	Conclusão e objetivos	226	
9	REAÇÕES RADICALARES		229	
	9.1	As reações radicalares	231	
	9.2	Formação e estrutura de radicais	232	
	9.3	Uma reação radicalar em cadeia	234	
	9.4	Adição radicalar de HBr a ligações duplas CC	234	
	9.5	Halogenação radicalar de alcanos	237	
	9.6	Polimerização radicalar	239	
	9.7	Conclusão e objetivos	240	
10	ADI	ÇÃO NUCLEÓFILA AO GRUPO CARBONILO	243	
	10.1	Grupo carbonilo: polarização, reatividade e grupos funcionais	245	
	10.2	Reatividade genérica de um grupo carbonilo	250	
	10.3	Mecanismo de adição nucleófila ao grupo carbonilo	250	
	10.4	Adição de reagentes organometálicos a aldeídos e cetonas	251	
	10.5	Adição de hidreto a aldeídos e cetonas: redução a álcool	254	
	10.6	Adição de água a aldeídos e cetonas: hidratos	256	
	10.7	Adição de álcoois a aldeídos e cetonas: hemiacetais	258	
	10.8	Conclusão e objetivos	259	

11	SUB	STITUIÇÃO NUCLEÓFILA EM GRUPOS CARBONILO	261
	11.1	A substituição nucleófila em grupos carbonilo	263
	11.2	Reação de ésteres com reagentes de Grignard	265
	11.3	Redução de ésteres	267
	11.4	Hidrólise de derivados de ácido carboxílico	267
	11.5	Interconversão de derivados de ácido carboxílico	267
	11.6	Hidrólise de ésteres e amidas	273
	11.7	Conversão de ácidos carboxílicos em ésteres	276
	11.8	Conversão de amidas em ésteres	278
	11.9	Conversão de ácidos carboxílicos em cloretos de ácido	278
	11.10	Formação de amidas e ésteres a partir de ácidos carboxílicos	279
	11.11	Conclusão e objetivos	281
12	SUB	STITUIÇÃO NUCLEÓFILA EM GRUPOS CARBONILO	
	COM	I PERDA DO OXIGÉNIO CARBONÍLICO	283
	12.1	Introdução	285
	12.2	Substituição do oxigénio carbonílico de aldeídos e cetonas	
		por oxigénio: acetais	286
	12.3	Substituição de oxigénio carbonílico em aldeídos e cetonas	289
		por azoto: iminas, oximas e hidrazonas	
	12.4	Formação de iminas: reação com aminas primárias	290
	12.5	Substituição do oxigénio carbonílico de aldeídos e cetonas	
		por carbono: a reação de Wittig	292
	12.6	Conclusão e objetivos	294
13	OXII	DAÇÃO-REDUÇÃO: INTERCONVERSÃO ENTRE ÁLCOOIS E	
	GRU	POS CARBONILO	297
	13.1	Interconversões entre compostos carbonílicos e álcoois	299
	13.2	Redução de grupos carbonilo	300
	13.3	Oxidação de álcoois com reagentes de crómio	304
	13.4	Oxidação de álcoois primários e aldeídos	304
	13.5	Conclusão e objetivos	307

14	QUÍMICA DO CARBONO α EM GRUPOS CARBONILO		309
	14.1	A enolização em compostos carbonílicos	311
	14.2	Ataque direto ao carbonilo <i>vs.</i> enolização	313
	14.3	Formação de enolatos e suas reações: o equilíbrio-chave	314
	14.4	Reação de enolatos com aldeídos e cetonas: a reação aldólica	316
	14.5	Reação de enolatos com ésteres: a reação de Claisen	324
	14.6	Conclusão e objetivos	332
15	ADIÇÃO CONJUGADA		335
	15.1	A adição conjugada	337
	15.2	Adição direta vs. adição conjugada	338
	15.3	Adição conjugada de aminas, álcoois e tióis	341
	15.4	Enolatos em adições conjugadas	344
	15.5	Conclusão e objetivos	347
16	AROMÁTICOS		349
	16.1	Aromaticidade e reatividade	351
	16.2	Substituição eletrófila aromática	351
	16.3	Efeito de substituintes do anel aromático na velocidade da $S_{\scriptscriptstyle F}$ Ar	353
	16.4	Principais reações de S _F Ar	354
	16.5	Reatividade e regiosseletividade na S _F Ar	361
	16.6	Reações da cadeia lateral	372
	16.7	Conclusão e objetivos	376
17	QUÍMICA DE GRUPOS FUNCIONAIS		379
	17.1	Química Orgânica por mecanismo reacional e química de grupos	
		funcionais	381
	17.2	Síntese e reatividade de grupos funcionais	382